a

Sains Malaysiana 54(5)(2025): 1319-1330

http://doi.org/10.17576/jsm-2025-5405-10

 

Preclinical Safety Evaluation of WJMSCs and Their Secretome

(Penilaian Keselamatan Praklinikal WJMSC dan Sekretomnya)

 

PREMASANGERY KATHIVALOO1,2,*, SUBRAMANI PARASURAMAN3, BADRUL AKMAL HISHAM MD YUSOFF4, RAZIANA RASIB1, KARTHIK CHANDRAN1 & KATHIRESANV.SATHASIVAM2

 

1Meluha Therapeutics Sdn Bhd, Lot 1G-2G Kompleks Lanai, 62250 Putrajaya, Malaysia

2Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia

3Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia

4Department of Orthopedics & Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 5 July 2024/Accepted: 24 January 2025

 

Abstract

Mesenchymal stem cells (MSC) are a promising therapy in regenerative medicine due to their unique ability to differentiate into other cells. Among established sources of MSC, MSC derived from Wharton’s jelly (WJSC) of an umbilical cord is a popular source since it involves a painless procedure to obtain the cord with an exceptional proliferation rate compared to other sources. However, the safety and efficacy of MSC must be confirmed through preclinical studies before clinical trials in humans. A study was designed to achieve the maximum tolerable dose (MTD) and safety and toxicity effects of WJSC and its secretomes in animal models. The MTD was achieved through acute toxicity testing on healthy female Sprague Dawley (SD) rats while the safety was assessed using a subchronic toxicity study on healthy male and female SD rats divided into four groups (control, low dose, medium dose and high dose). The safety assessments were then evaluated through biochemical, haematological, and histopathological analyses where the data obtained were analysed using a one-way ANOVA followed by Tukey’s test. Statistical analysis confirmed no significant differences in all tests performed in the study groups. At the study's termination, neither cells nor secretomes injected rats were found to be deceased and no toxic or severe adverse effects were discovered. Thus, both WJSC and their secretomes applications in humans could be considered harmless for medical purposes.

Keywords: Acute toxicity; safety and efficacy; subchronic toxicity; Wharton’s jelly stem cells

 

Abstrak

Sel stem mesenkimal (MSC) merupakan terapi yang meyakinkan dalam perubatan regeneratif kerana keupayaan uniknya untuk membeza menjadi sel lain. Antara sumber MSC yang ada pada masa ini adalah MSC daripada jeli Wharton (WJSC) tali pusat yang merupakan sumber popular kerana mempunyai kadar percambahan yang lebih banyak berbanding sumber lain dan tidak melibatkan prosedur yang menyakitkan. Walau bagaimanapun, keselamatan dan keberkesanan MSC mesti disahkan melalui kajian praklinikal sebelum ujian klinikal pada manusia. Satu kajian telah direka untuk mencapai dos maksimum yang boleh diterima (MTD) dan kesan keselamatan dan ketoksikan WJSC dan sekretomnya dalam model haiwan. MTD dicapai melalui ujian toksisiti akut ke atas tikus Sprague Dawley (SD) betina yang sihat manakala keselamatan dinilai menggunakan kajian toksisiti subkronik ke atas tikus SD jantan dan betina sihat yang dibahagikan kepada empat kumpulan (kawalan, dos rendah, dos sederhana dan dos tinggi). Penilaian keselamatan kemudiannya dinilai melalui analisis biokimia, hematologi dan histopatologi dan data yang diperoleh dianalisis menggunakan ANOVA sehala diikuti dengan ujian Tukey. Analisis statistik mengesahkan tiada perbezaan yang signifikan dalam semua ujian yang dijalankan dalam kumpulan kajian. Pada pengakhiran kajian, tiada tikus yang disuntik dengan sel dan sekretom ditemui mati dan tiada kesan toksik atau kesan sampingan yang teruk ditemui. Oleh itu, kedua-dua aplikasi WJSC dan sekretom untuk manusia boleh dianggap tidak berbahaya untuk tujuan perubatan.

Kata kunci: Keselamatan dan keberkesanan; ketoksikan akut; ketoksikan subkronik; sel stem jeli Wharton

 

REFERENCES

Aithal, A.P., Bairy, L.K. & Seetharam, R.N. 2017. Safety assessment of human bone marrow- derived mesenchymal stromal cells transplantation in wistar rats. Journal of Clinical and Diagnostic Research 11(9): FF01-FF03. https://doi.org/10.7860/JCDR/2017/29515.10534

Al-Qarakhli, A.M.A., Yusop, N., Waddington, R.J. & Moseley, R. 2019. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Molecular and Cell Biology 20: 51. https://doi.org/10.1186/s12860-019-0235-y

Amable, P., Teixeira, M.V., Carias, R.B., Granjeiro, J. & Borojevic, R. 2014. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Research & Therapy 5(2): 53. https://doi.org/10.1186/scrt442

Arome, D. & Chinedu, E. 2013. The importance of toxicity testing. Journal of Pharmaceutical and BioSciences 4: 146-148.

Aurora, A.B. & Olson, E.N. 2014. Immune modulation of stem cells and regeneration. Cell Stem Cell 15(1): 14-25. https://doi.org/10.1016/j.stem.2014.06.009

Balasubramanian, S., Thej, C., Venugopal, P., Priya, N., Zakaria, Z., SundarRaj, S. & Majumdar, A.S. 2013. Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow: Increased neuronal differentiation propensity of Wharton’s jelly derived MSCs. Cell Biology International 37(5): 507-515. https://doi.org/10.1002/cbin.10056

Balasubramanian, S., Venugopal, P., Sundarraj, S., Zakaria, Z., Majumdar, A.S. & Ta, M. 2012. Comparison of chemokine and receptor gene expression between Wharton’s jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy 14(1): 26-33. https://doi.org/10.3109/14653249.2011.605119

Barry, F.P. & Murphy, J.M. 2004. Mesenchymal stem cells: Clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology 36(4): 568-584. https://doi.org/10.1016/j.biocel.2003.11.001

Chan, A.M.L., Ng, A.M.H., Mohd Yunus, M.H., Hj Idrus, R.B., Law, J.X., Yazid, M.D., Chin, K.Y., Shamsuddin, S.A., Mohd Yusof, M.R., Razali, R.A., Mat Afandi, M.A., Hassan, M.N.F., Ng, S.N., Koh, B. & Lokanathan, Y. 2022. Safety study of allogeneic mesenchymal stem cell therapy in animal model. Regenerative Therapy 19: 158-165. https://doi.org/10.1016/j.reth.2022.01.008

Conconi, M.T., Di Liddo, R., Tommasini, M., Calore, C. & Parnigotto, P.P. 2011. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. TOTERMJ 4(1): 6-20. https://doi.org/10.2174/1875043501104010006

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J. & Horwitz, E.M. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 8(4): 315-317. https://doi.org/10.1080/14653240600855905

Frey-Vasconcells, J., Whittlesey, K.J., Baum, E. & Feigal, E.G. 2012. Translation of stem cell research: Points to consider in designing preclinical animal studies. Stem Cells Translational Medicine 1(5): 353-358. https://doi.org/10.5966/sctm.2012-0018

Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C. & Klingemann, H. 2007. Umbilical cord mesenchymal stem cells: Adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation 13(12): 1477-1486. https://doi.org/10.1016/j.bbmt.2007.08.048

Halme, D.G. & Kessler, D.A. 2006. FDA regulation of stem-cell-based therapies. New England Journal of Medicine 355(16): 1730-1735. https://doi.org/10.1056/NEJMhpr063086

He, J., Ruan, G., Yao, X., Liu, J., Zhu, X., Zhao, J., Pang, R., Li, Z. & Pan, X. 2017. Chronic toxicity test in cynomolgus monkeys for 98 days with repeated intravenous infusion of cynomolgus umbilical cord mesenchymal stem cells. Cellular Physiology and Biochemistry 43(3): 891-904. https://doi.org/10.1159/000481639

Hoffmann, A., Floerkemeier, T., Melzer, C. & Hass, R. 2017. Comparison of in vitro -Cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord: in vitro -cultivation of human mesenchymal stroma/stem cells. Journal of Tissue Engineering and Regenerative Medicine 11(9): 2565-2581. https://doi.org/10.1002/term.2153

Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. & Verfaillie, C.M. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41-49. https://doi.org/10.1038/nature00870

Jo, C.H., Kim, O.S., Park, E.Y., Kim, B.J., Lee, J.H., Kang, S.B., Lee, J.H., Han, H.S., Rhee, S.H. & Yoon, K.S. 2008. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell and Tissue Research 334(3): 423-433. https://doi.org/10.1007/s00441-008-0696-3

Joers, V.L. & Emborg, M.E. 2010. Preclinical assessment of stem cell therapies for neurological diseases. ILAR Journal 51(1): 24-41. https://doi.org/10.1093/ilar.51.1.24

Kannaiyan, J., Narayanan, S., Palaniyandi, M. & Pandey, A. 2017. Acute toxicity study of mesenchymal stromal cells derived from Wharton’s jelly in mouse by intravenous and subcutaneous route. International Journal of Research and Development in Pharmacy & Life Sciences 6(5): 2748-2756. https://doi.org/10.21276/IJRDPL.2278-0238.2017.6(5).2748-2756

Kim, H.O., Choi, S.M. & Kim, H.S. 2013. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine 10(3): 93-101. https://doi.org/10.1007/s13770-013-0010-7

Kuchroo, P., Dave, V., Vijayan, A., Viswanathan, C. & Ghosh, D. 2015. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angio-genesis in vitro by a VEGF-independent pathway. Stem Cells and Development 24(4): 437-450. https://doi.org/10.1089/scd.2014.0184

McElreavey, K.D., Irvine, A.I., Ennis, K.T. & McLean, W.H.I. 1991. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochemical Society Transactions 19(1): 29S-29S. https://doi.org/10.1042/bst019029s

OECD. 2008.Test No. 407: Repeated dose 28-day oral toxicity study in rodents. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264070684-en 

OECD. 2002. Test No. 423: Acute oral toxicity - Acute toxic class method. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264071001-en

Ranjbaran, H., Abediankenari, S., Mohammadi, M., Jafari, N., Khalilian, A., Rahmani, Z., Momeninezhad Amiri, M. & Ebrahimi, P. 2018. Wharton’s jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Medica Iranica 56(1): 28-33.

Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337. https://doi.org/10.1634/stemcells.2004-0013

Wang, Y., Han, Z.B., Ma, J., Zuo, C., Geng, J., Gong, W., Sun, Y., Li, H., Wang, B., Zhang, L., He, Y. & Han, Z.C. 2012. Toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells and Development 21(9): 1401-1408. https://doi.org/10.1089/scd.2011.0441

Weil, B.R., Abarbanell, A.M., Herrmann, J.L., Wang, Y. & Meldrum, D.R. 2009. High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 296(6): R1735-R1743. https://doi.org/10.1152/ajpregu.90876.2008

Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J., Zhou, H. & Chen, Y. 2004. Mesenchymal stern cells from adult human bone marrow differentiate into a cardio-myocyte phenotype in vitro. Experimental Biology and Medicine 229(7): 623-631. https://doi.org/10.1177/153537020422900706

 

*Corresponding author; email: kremasangery@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next