Sains Malaysiana 54(5)(2025): 1319-1330
http://doi.org/10.17576/jsm-2025-5405-10
Preclinical Safety Evaluation of WJMSCs and Their Secretome
(Penilaian Keselamatan Praklinikal WJMSC dan Sekretomnya)
PREMASANGERY
KATHIVALOO1,2,*,
SUBRAMANI PARASURAMAN3, BADRUL AKMAL HISHAM MD YUSOFF4,
RAZIANA RASIB1, KARTHIK CHANDRAN1 &
KATHIRESANV.SATHASIVAM2
1Meluha Therapeutics Sdn Bhd, Lot 1G-2G Kompleks Lanai, 62250
Putrajaya, Malaysia
2Department of Biotechnology, Faculty of Applied Sciences, AIMST
University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
3Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong,
Kedah, Malaysia
4Department of Orthopedics &
Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 5 July
2024/Accepted: 24 January 2025
Abstract
Mesenchymal stem cells (MSC) are a promising therapy in regenerative
medicine due to their unique ability to differentiate into other cells. Among
established sources of MSC, MSC derived from Wharton’s jelly (WJSC) of an
umbilical cord is a popular source since it involves a painless procedure to
obtain the cord with an exceptional proliferation rate compared to other
sources. However, the safety and efficacy of MSC must be confirmed through
preclinical studies before clinical trials in humans. A study was designed to
achieve the maximum tolerable dose (MTD) and safety and toxicity effects of
WJSC and its secretomes in animal models. The MTD was
achieved through acute toxicity testing on healthy female Sprague Dawley (SD)
rats while the safety was assessed using a subchronic toxicity study on healthy male and female SD rats divided into four groups
(control, low dose, medium dose and high dose). The safety assessments were
then evaluated through biochemical, haematological, and histopathological
analyses where the data obtained were analysed using a one-way ANOVA followed
by Tukey’s test. Statistical analysis confirmed no significant differences in
all tests performed in the study groups. At the study's termination, neither
cells nor secretomes injected rats were found to be
deceased and no toxic or severe adverse effects were discovered. Thus, both
WJSC and their secretomes applications in humans
could be considered harmless for medical purposes.
Keywords: Acute toxicity; safety and efficacy; subchronic toxicity; Wharton’s jelly stem cells
Abstrak
Sel
stem mesenkimal (MSC) merupakan terapi yang meyakinkan dalam perubatan
regeneratif kerana keupayaan uniknya untuk membeza menjadi sel lain. Antara
sumber MSC yang ada pada masa ini adalah MSC daripada jeli Wharton (WJSC) tali
pusat yang merupakan sumber popular kerana mempunyai kadar percambahan yang
lebih banyak berbanding sumber lain dan tidak melibatkan prosedur yang
menyakitkan. Walau bagaimanapun, keselamatan dan keberkesanan MSC mesti
disahkan melalui kajian praklinikal sebelum ujian klinikal pada manusia. Satu
kajian telah direka untuk mencapai dos maksimum yang boleh diterima (MTD) dan
kesan keselamatan dan ketoksikan WJSC dan sekretomnya dalam model haiwan. MTD
dicapai melalui ujian toksisiti akut ke atas tikus Sprague Dawley (SD) betina
yang sihat manakala keselamatan dinilai menggunakan kajian toksisiti subkronik
ke atas tikus SD jantan dan betina sihat yang dibahagikan kepada empat kumpulan
(kawalan, dos rendah, dos sederhana dan dos tinggi). Penilaian keselamatan
kemudiannya dinilai melalui analisis biokimia, hematologi dan histopatologi dan
data yang diperoleh dianalisis menggunakan ANOVA sehala diikuti dengan ujian
Tukey. Analisis statistik mengesahkan tiada perbezaan yang signifikan dalam
semua ujian yang dijalankan dalam kumpulan kajian. Pada pengakhiran kajian,
tiada tikus yang disuntik dengan sel dan sekretom ditemui mati dan tiada kesan
toksik atau kesan sampingan yang teruk ditemui. Oleh itu, kedua-dua aplikasi
WJSC dan sekretom untuk manusia boleh dianggap tidak berbahaya untuk tujuan
perubatan.
Kata kunci: Keselamatan dan keberkesanan; ketoksikan
akut; ketoksikan subkronik; sel stem jeli Wharton
REFERENCES
Aithal, A.P., Bairy, L.K. & Seetharam,
R.N. 2017. Safety assessment of human bone marrow- derived mesenchymal stromal
cells transplantation in wistar rats. Journal of
Clinical and Diagnostic Research 11(9): FF01-FF03.
https://doi.org/10.7860/JCDR/2017/29515.10534
Al-Qarakhli, A.M.A., Yusop, N., Waddington, R.J. & Moseley, R. 2019. Effects
of high glucose conditions on the expansion and differentiation capabilities of
mesenchymal stromal cells derived from rat endosteal niche. BMC Molecular
and Cell Biology 20: 51. https://doi.org/10.1186/s12860-019-0235-y
Amable, P., Teixeira, M.V., Carias, R.B.,
Granjeiro, J. & Borojevic, R. 2014. Protein synthesis
and secretion in human mesenchymal cells derived from bone marrow, adipose
tissue and Wharton’s jelly. Stem Cell Research & Therapy 5(2): 53.
https://doi.org/10.1186/scrt442
Arome, D. & Chinedu, E. 2013. The importance of
toxicity testing. Journal of Pharmaceutical and BioSciences 4: 146-148.
Aurora, A.B. & Olson, E.N. 2014. Immune modulation
of stem cells and regeneration. Cell Stem Cell 15(1): 14-25.
https://doi.org/10.1016/j.stem.2014.06.009
Balasubramanian, S., Thej,
C., Venugopal, P., Priya, N., Zakaria, Z., SundarRaj, S. & Majumdar, A.S.
2013. Higher propensity of Wharton’s jelly derived mesenchymal stromal cells
towards neuronal lineage in comparison to those derived from adipose and bone
marrow: Increased neuronal differentiation propensity of Wharton’s jelly derived
MSCs. Cell Biology International 37(5): 507-515. https://doi.org/10.1002/cbin.10056
Balasubramanian, S., Venugopal, P., Sundarraj, S.,
Zakaria, Z., Majumdar, A.S. & Ta, M. 2012. Comparison of chemokine and
receptor gene expression between Wharton’s jelly and bone marrow-derived
mesenchymal stromal cells. Cytotherapy 14(1):
26-33. https://doi.org/10.3109/14653249.2011.605119
Barry, F.P. & Murphy, J.M. 2004. Mesenchymal stem
cells: Clinical applications and biological characterization. The
International Journal of Biochemistry & Cell Biology 36(4): 568-584.
https://doi.org/10.1016/j.biocel.2003.11.001
Chan, A.M.L., Ng, A.M.H., Mohd Yunus, M.H., Hj Idrus, R.B., Law, J.X., Yazid, M.D., Chin, K.Y.,
Shamsuddin, S.A., Mohd Yusof, M.R., Razali, R.A., Mat Afandi, M.A., Hassan,
M.N.F., Ng, S.N., Koh, B. & Lokanathan, Y. 2022.
Safety study of allogeneic mesenchymal stem cell therapy in animal model. Regenerative
Therapy 19: 158-165. https://doi.org/10.1016/j.reth.2022.01.008
Conconi, M.T., Di Liddo, R.,
Tommasini, M., Calore, C. & Parnigotto, P.P.
2011. Phenotype and differentiation potential of stromal populations obtained
from various zones of human umbilical cord: An overview. TOTERMJ 4(1): 6-20.
https://doi.org/10.2174/1875043501104010006
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans,
R.J., Keating, A., Prockop, D.J. & Horwitz, E.M.
2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The
International Society for Cellular Therapy Position Statement. Cytotherapy 8(4): 315-317. https://doi.org/10.1080/14653240600855905
Frey-Vasconcells, J.,
Whittlesey, K.J., Baum, E. & Feigal, E.G. 2012.
Translation of stem cell research: Points to consider in designing preclinical
animal studies. Stem Cells Translational Medicine 1(5): 353-358.
https://doi.org/10.5966/sctm.2012-0018
Friedman, R., Betancur, M., Boissel,
L., Tuncer, H., Cetrulo, C. & Klingemann, H. 2007. Umbilical cord
mesenchymal stem cells: Adjuvants for human cell transplantation. Biology of
Blood and Marrow Transplantation 13(12): 1477-1486. https://doi.org/10.1016/j.bbmt.2007.08.048
Halme, D.G. & Kessler, D.A. 2006. FDA regulation
of stem-cell-based therapies. New England Journal of Medicine 355(16):
1730-1735. https://doi.org/10.1056/NEJMhpr063086
He, J., Ruan, G., Yao, X., Liu, J., Zhu, X., Zhao,
J., Pang, R., Li, Z. & Pan, X. 2017. Chronic toxicity test in cynomolgus
monkeys for 98 days with repeated intravenous infusion of cynomolgus umbilical
cord mesenchymal stem cells. Cellular Physiology and Biochemistry 43(3):
891-904. https://doi.org/10.1159/000481639
Hoffmann, A., Floerkemeier,
T., Melzer, C. & Hass, R. 2017. Comparison of in vitro -Cultivation
of human mesenchymal stroma/stem cells derived from bone marrow and umbilical
cord: in vitro -cultivation of human mesenchymal stroma/stem cells. Journal
of Tissue Engineering and Regenerative Medicine 11(9): 2565-2581.
https://doi.org/10.1002/term.2153
Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L.,
Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S.,
Lisberg, A., Low, W.C., Largaespada, D.A. & Verfaillie, C.M. 2002.
Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41-49. https://doi.org/10.1038/nature00870
Jo, C.H., Kim, O.S., Park, E.Y., Kim, B.J., Lee,
J.H., Kang, S.B., Lee, J.H., Han, H.S., Rhee, S.H. & Yoon, K.S. 2008. Fetal mesenchymal stem cells derived from human umbilical
cord sustain primitive characteristics during extensive expansion. Cell and
Tissue Research 334(3): 423-433. https://doi.org/10.1007/s00441-008-0696-3
Joers, V.L. & Emborg, M.E. 2010. Preclinical assessment
of stem cell therapies for neurological diseases. ILAR Journal 51(1): 24-41.
https://doi.org/10.1093/ilar.51.1.24
Kannaiyan, J., Narayanan, S., Palaniyandi,
M. & Pandey, A. 2017. Acute toxicity study of mesenchymal stromal cells
derived from Wharton’s jelly in mouse by intravenous and subcutaneous route. International
Journal of Research and Development in Pharmacy & Life Sciences 6(5):
2748-2756. https://doi.org/10.21276/IJRDPL.2278-0238.2017.6(5).2748-2756
Kim, H.O., Choi, S.M. & Kim, H.S. 2013.
Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative
Medicine 10(3): 93-101. https://doi.org/10.1007/s13770-013-0010-7
Kuchroo, P., Dave, V., Vijayan, A., Viswanathan, C.
& Ghosh, D. 2015. Paracrine factors secreted by umbilical cord-derived
mesenchymal stem cells induce angio-genesis in vitro by a VEGF-independent
pathway. Stem Cells and Development 24(4): 437-450.
https://doi.org/10.1089/scd.2014.0184
McElreavey, K.D., Irvine, A.I., Ennis, K.T. & McLean,
W.H.I. 1991. Isolation, culture and characterisation of fibroblast-like cells
derived from the Wharton’s jelly portion of human umbilical cord. Biochemical
Society Transactions 19(1): 29S-29S. https://doi.org/10.1042/bst019029s
OECD. 2008.Test No. 407: Repeated dose 28-day oral
toxicity study in rodents. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264070684-en
OECD. 2002. Test No. 423: Acute oral toxicity -
Acute toxic class method. OECD Guidelines for the Testing of Chemicals,
Section 4. https://doi.org/10.1787/9789264071001-en
Ranjbaran, H., Abediankenari, S.,
Mohammadi, M., Jafari, N., Khalilian, A., Rahmani,
Z., Momeninezhad Amiri, M.
& Ebrahimi, P. 2018. Wharton’s jelly derived-mesenchymal stem cells:
Isolation and characterization. Acta Medica Iranica 56(1): 28-33.
Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C.,
Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal stem
cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337. https://doi.org/10.1634/stemcells.2004-0013
Wang, Y., Han, Z.B., Ma, J., Zuo, C., Geng, J.,
Gong, W., Sun, Y., Li, H., Wang, B., Zhang, L., He, Y. & Han, Z.C. 2012.
Toxicity study of multiple-administration human umbilical cord mesenchymal stem
cells in cynomolgus monkeys. Stem Cells and Development 21(9): 1401-1408.
https://doi.org/10.1089/scd.2011.0441
Weil, B.R., Abarbanell, A.M., Herrmann, J.L., Wang,
Y. & Meldrum, D.R. 2009. High glucose concentration in cell culture medium
does not acutely affect human mesenchymal stem cell growth factor production or
proliferation. American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology 296(6): R1735-R1743.
https://doi.org/10.1152/ajpregu.90876.2008
Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu,
J., Zhou, H. & Chen, Y. 2004. Mesenchymal stern cells from adult human bone
marrow differentiate into a cardio-myocyte phenotype in vitro. Experimental
Biology and Medicine 229(7): 623-631.
https://doi.org/10.1177/153537020422900706
*Corresponding author; email:
kremasangery@gmail.com
|